RECEIVED 0CT 1 0 2001

Gardnerville Public Hearings

0013

552342

- 15 MR. COBOURN: John, J-o-h-n, Cobourn,
- 16 C-o-b-o-u-r-n.
- MR. WARD: Just go ahead and make your comment
- 18 when you are ready, sir.
- MR. COBOURN: Okay. I have a concern about the
- 20 earthquake faults at Yucca Mountain. Does the mapping of
- 21 the earthquake faults show all the possible fracture
- 22 zones?
- Is it possible that a future earthquake could
- 24 create a new fracture that would go through the
- 25 emplacement tunnel? Can this question be answered with

0014

- 1 current geological methods?
- 2 Could a fracture of a fault within Yucca
- 3 Mountain break open the emplacement of the waste material?
- Would there be an increased risk of -- I don't
- 5 know if the word is radiation or radioactivity. What's
- 6 the hazardous leak, radiation, radioactivity, radioactive
- 7 material?
- 8 MR. WARD: Radioactive material.
- 9 MR. COBOURN: So, would there be possible
- 10 increased risks of a leak of radioactive material?

552342

11	Could the pathway for a leakage after an					
12	earthquake include both a surface leak, as well as					
13	groundwater contamination? That's the end of that					
14	question.					
15	The second question: Can geologists determine					
16	the possibility of a rise in the groundwater table and the					
17	frequency with which the groundwater table might rise or					
18	fall beneath the repository?					
19	I understand that some scientists claim the					
20	water table was as high as the repository in the past.					
21	Can we determine the probability of how close the water					
22	table could get to the repository or how often the water					
23	table would rise to the level of the repository during the					
24	next 10,000 years?					
25	Third question: What would be the environmental					
00	15					
1	consequences to flora and fauna, including human beings,					
2	for each of the above two catastrophic scenarios, that is,					
3	an earthquake which fractures the repository walls and/or					
4	increased levels of the water table combined with					
5	radioactive contamination of the saturated zone of the					
6	aquifer?					
7	For example, what if an earthquake fractured the					

552342

8	repository	walls in	100 or 500 y	years, causing	migration of
---	------------	----------	--------------	----------------	--------------

- 9 radioactive material into the saturated groundwater zone
- 10 and high levels of radioactive material reached
- 11 groundwater discharge zones or wells in 500 or 1,000
- 12 years, would the environmental damage be limited to a
- 13 small area within the basin or could radioactive
- 14 contamination travel across the surface of the land or
- 15 into the atmosphere?
- Final question: What is the most catastrophic
- 17 scenario for compromise of the waste storage facility?
- 18 Have scientists extrapolated environmental damages from a
- 19 catastrophic accident or leak to their maximum geographic
- 20 and biological extent? That's it.